On the homotopy elements h_0h_n

Xiangjun Wang

SUSTech School of Mathematical Sciences, Nankai University

June 6, 2018

Xiangjun Wang On the homotopy elements $h_0 h_n$

・ロト ・回ト ・ヨト

- ∢ ≣ ▶

Contents

2 Toda differential

3 Method of infinite descent

イロト イヨト イヨト イヨト

Classical ASS and ANSS

 Let p ≥ 5 be an odd prime. One has the classical Adams spectral sequence (ASS) and the Adams-Novikov spectral sequence (ANSS), they all converge to the stable homotopy groups of spheres.

Between the ANSS and the ASS there is the Thom map Φ induced by $\Phi: BP \longrightarrow H\mathbb{Z}/p$.

イロン イヨン イヨン イヨン

To detect the $E_2\mbox{-terms}$ of the ASS and of the ANSS, one has the following spectral sequences

where $P = \mathbb{Z}/p[\xi_1, \xi_2, \cdots]$ and $Q = \mathbb{Z}/p[q_0, q_1, \cdots]$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

The homotopy elements h_0h_n

• One has $\beta_{p^n/p^n-1} \in Ext_{BP_*BP}^{2,*}(BP_*, BP_*)$, which is detected by the CSS and $\Phi(\beta_{p^n/p^n-1}) = h_0h_{n+1}$.

$$\begin{array}{c} H^{*}(P,Q) \xrightarrow{\mathsf{CESS}} Ext_{\mathcal{A}}^{2} \\ \operatorname{Alg.} \bigvee \mathsf{NSS}_{\Phi} & \bigvee \mathsf{ASS} \\ H^{0}(v_{2}^{-1}BP_{*}/(p^{\infty},v_{1}^{\infty})) \overrightarrow{\mathsf{CSS}} Ext_{BP_{*}BP}^{2} \overrightarrow{\mathsf{ANSS}}^{\pi_{*}}(S^{0}) \end{array}$$

・ロン ・回と ・ヨン ・ヨン

æ

- The convergence of h₀h_{n+1} in the classical ASS (that of β_{pⁿ/pⁿ-1} in the ANSS) have been being a long standing problem in stable homotopy groups of spheres.
- Let M be the $mod \ p$ Moore spectrum, $M(1, p^n 1)$ be the cofiber of $v_1^{p^n 1} : \Sigma^* M \longrightarrow M$.

Secondary periodic family elements in the ANSS, D. Ravenel

Theorem Let $p \ge 5$ be an odd prime. If for some fixed $n \ge 1$,

- the spectrum $M(1, p^n 1)$ is a ring spectrum,
- β_{p^n/p^n-1} is a permanent cycle and
- the corresponding homotopy element has order p,

then $\beta_{sp^n/j}$ is a permanent cycle (and the corresponding homotopy element has order p) for all $s \ge 1$ and $1 \le j \le p^n - 1$.

・ロン ・回と ・ヨン・

- The convergence of h₀h_{n+1} in the classical ASS (that of β_{pⁿ/pⁿ-1} in the ANSS) have been being a long standing problem in stable homotopy groups of spheres.
- Let M be the $mod \ p$ Moore spectrum, $M(1, p^n 1)$ be the cofiber of $v_1^{p^n 1} : \Sigma^* M \longrightarrow M$.

Secondary periodic family elements in the ANSS, D. Ravenel

Theorem Let $p \ge 5$ be an odd prime. If for some fixed $n \ge 1$,

- the spectrum $M(1, p^n 1)$ is a ring spectrum,
- β_{p^n/p^n-1} is a permanent cycle and
- the corresponding homotopy element has order p,

then $\beta_{sp^n/j}$ is a permanent cycle (and the corresponding homotopy element has order p) for all $s \ge 1$ and $1 \le j \le p^n - 1$.

・ロン ・回と ・ヨン・

- The convergence of h₀h_{n+1} in the classical ASS (that of β_{pⁿ/pⁿ-1} in the ANSS) have been being a long standing problem in stable homotopy groups of spheres.
- Let M be the $mod \ p$ Moore spectrum, $M(1, p^n 1)$ be the cofiber of $v_1^{p^n 1} : \Sigma^* M \longrightarrow M$.

Secondary periodic family elements in the ANSS, D. Ravenel

Theorem Let $p \ge 5$ be an odd prime. If for some fixed $n \ge 1$,

- the spectrum $M(1, p^n 1)$ is a ring spectrum,
- β_{p^n/p^n-1} is a permanent cycle and
- the corresponding homotopy element has order p,

then $\beta_{sp^n/j}$ is a permanent cycle (and the corresponding homotopy element has order p) for all $s \ge 1$ and $1 \le j \le p^n - 1$.

イロト イヨト イヨト イヨト

- S. Oka proved that $M(1, p^n 1)$ is a ring spectrum.
- From the theorem above and the convergence of h_0h_{n+1} one can prove the β_{p^n/p^n-1} is a permanent cycle of order p.

People concerned with the triviality of $v_1^{p^n-1}\widetilde{eta}_{p^n/p^n-1}$

< ロ > < 回 > < 回 > < 回 > < 回 > <

- S. Oka proved that $M(1, p^n 1)$ is a ring spectrum.
- From the theorem above and the convergence of h_0h_{n+1} one can prove the β_{p^n/p^n-1} is a permanent cycle of order p.

People concerned with the triviality of $v_1^{p^n-1}\widetilde{\beta}_{p^n/p^n-1}$

< ロ > < 回 > < 回 > < 回 > < 回 > <

- S. Oka proved that $M(1, p^n 1)$ is a ring spectrum.
- From the theorem above and the convergence of h_0h_{n+1} one can prove the β_{p^n/p^n-1} is a permanent cycle of order p.

People concerned with the triviality of $v_1^{p^n-1}\widetilde{\beta}_{p^n/p^n-1}$

・ロン ・回 と ・ ヨン ・ ヨン

Toda differential

- α_1 and $b_0 = \beta_1$ in $Ext_{BP_*BP}^{*,*}(BP_*, BP_*)$ are permanent cycles in the ANSS, they converges to the homotopy elements α_1 , β_1 respectively.
- H. Toda proved that $\alpha_1 \beta_1^p = 0$ in $\pi_*(S^0)$.
- The relation $\alpha_1 \beta_1^p = 0$ support a Adams differential

$$d_r(x) = \alpha_1 b_0^p.$$

It is detected that $x = b_1$ i.e $d_{2p-1}(b_1)) = k \cdot \alpha_1 b_0^p$

• Based on $d_{2p-1}(b_1) = k \cdot \alpha_1 b_0^p$, D. Ravenel proved that

$$d_{2p-1}(b_n) \equiv \alpha_1 b_{n-1}^p$$

イロン イヨン イヨン イヨン

Toda differential

- α_1 and $b_0 = \beta_1$ in $Ext_{BP_*BP}^{*,*}(BP_*, BP_*)$ are permanent cycles in the ANSS, they converges to the homotopy elements α_1 , β_1 respectively.
- H. Toda proved that $\alpha_1\beta_1^p = 0$ in $\pi_*(S^0)$.
- The relation $\alpha_1 \beta_1^p = 0$ support a Adams differential

$$d_r(x) = \alpha_1 b_0^p.$$

It is detected that $x = b_1$ i.e $d_{2p-1}(b_1)) = k \cdot \alpha_1 b_0^p$

• Based on $d_{2p-1}(b_1) = k \cdot \alpha_1 b_0^p$, D. Ravenel proved that

$$d_{2p-1}(b_n) \equiv \alpha_1 b_{n-1}^p$$

イロン 不同と 不同と 不同と

Toda differential

- α_1 and $b_0 = \beta_1$ in $Ext_{BP_*BP}^{*,*}(BP_*, BP_*)$ are permanent cycles in the ANSS, they converges to the homotopy elements α_1 , β_1 respectively.
- H. Toda proved that $\alpha_1 \beta_1^p = 0$ in $\pi_*(S^0)$.
- The relation $\alpha_1 \beta_1^p = 0$ support a Adams differential

$$d_r(x) = \alpha_1 b_0^p.$$

It is detected that $x = b_1$ i.e $d_{2p-1}(b_1)) = k \cdot \alpha_1 b_0^p$

• Based on $d_{2p-1}(b_1) = k \cdot \alpha_1 b_0^p$, D. Ravenel proved that

$$d_{2p-1}(b_n) \equiv \alpha_1 b_{n-1}^p$$

・ロン ・回と ・ヨン ・ヨン

Toda differential

- α_1 and $b_0 = \beta_1$ in $Ext_{BP_*BP}^{*,*}(BP_*, BP_*)$ are permanent cycles in the ANSS, they converges to the homotopy elements α_1 , β_1 respectively.
- H. Toda proved that $\alpha_1 \beta_1^p = 0$ in $\pi_*(S^0)$.
- The relation $\alpha_1 \beta_1^p = 0$ support a Adams differential

$$d_r(x) = \alpha_1 b_0^p.$$

It is detected that $x = b_1$ i.e $d_{2p-1}(b_1)) = k \cdot \alpha_1 b_0^p$

• Based on $d_{2p-1}(b_1) = k \cdot \alpha_1 b_0^p$, D. Ravenel proved that

$$d_{2p-1}(b_n) \equiv \alpha_1 b_{n-1}^p$$

・ロン ・回と ・ヨン ・ヨン

Consider the cofiber sequence

$$S^0 \xrightarrow{p} S^0 \longrightarrow M$$

which induces a short exact sequence of BP-homologies

$$0 \longrightarrow BP_* \xrightarrow{p} BP_* \longrightarrow BP_*M \longrightarrow 0$$

• The short exact sequence of *BP*-homologies induces a long exact sequence of *Ext* groups and it commutes with the Adams differential:

 $Ext^{s,t}_{BP_*BP}(BP_*, N)$ is denoted by $Ext^{s,t}(N)$ for short.

イロト イポト イヨト イヨト

• There are elements $v_1 \in Ext^{0,*}(BP_*M)$, $h_{n+1} \in Ext^{1,*}(BP_*M)$, $v_1b_{n-1}^p \in Ext^{2p,*}(BP_*M)$

$$\begin{split} \delta(h_{n+1}) = b_n, & \delta(v_1 b_{n-1}^p) = \alpha_1 b_{n-1}^p \\ \delta(v_1 h_{n+1}) = \beta_{p^n/p^n - 1}, & \delta(v_1^2 b_{n-1}^p) = \alpha_2 b_{n-1}^p. \end{split}$$

• So in the ANSS for the Moore spectrum one has

$$d_{2p-1}(h_{n+1}) = v_1 b_{n-1}^p, \qquad d_{2p-1}(v_1 h_{n+1}) = v_1^2 b_{n-1}^p.$$

• Applying the connecting homomorphism δ , one has

$$d_{2p-1}(\beta_{p^n/p^n-1}) = \alpha_2 b_{n-1}^p.$$

$$\cdots \longrightarrow Ext^{1,*}(BP_*) \longrightarrow Ext^{1,*}(BP_*M) \xrightarrow{\delta} Ext^{2,*}(BP_*) \longrightarrow \cdots$$

$$\downarrow^{d_{2p-1}} \qquad \qquad \downarrow^{d_{2p-1}} \qquad \qquad \downarrow^{d_{2p-1}}$$

$$\cdots \longrightarrow Ext^{2p,*}(BP_*) \longrightarrow Ext^{2p,*}(BP_*M) \xrightarrow{\delta} Ext^{2p+1,*}(BP_*) \longrightarrow \cdots$$

• There are elements $v_1 \in Ext^{0,*}(BP_*M)$, $h_{n+1} \in Ext^{1,*}(BP_*M)$, $v_1b_{n-1}^p \in Ext^{2p,*}(BP_*M)$

$$\begin{split} \delta(h_{n+1}) = & b_n, & \delta(v_1 b_{n-1}^p) = & \alpha_1 b_{n-1}^p \\ \delta(v_1 h_{n+1}) = & \beta_{p^n/p^n-1}, & \delta(v_1^2 b_{n-1}^p) = & \alpha_2 b_{n-1}^p. \end{split}$$

So in the ANSS for the Moore spectrum one has

$$d_{2p-1}(h_{n+1}) = v_1 b_{n-1}^p, \qquad d_{2p-1}(v_1 h_{n+1}) = v_1^2 b_{n-1}^p.$$

• Applying the connecting homomorphism δ , one has

 $d_{2p-1}(\beta_{p^n/p^n-1}) = \alpha_2 b_{n-1}^p.$

$$\cdots \longrightarrow Ext^{1,*}(BP_*) \longrightarrow Ext^{1,*}(BP_*M) \xrightarrow{\delta} Ext^{2,*}(BP_*) \longrightarrow \cdots$$

$$\downarrow^{d_{2p-1}} \qquad \qquad \downarrow^{d_{2p-1}} \qquad \qquad \downarrow^{d_{2p-1}}$$

$$\cdots \longrightarrow Ext^{2p,*}(BP_*) \longrightarrow Ext^{2p,*}(BP_*M) \xrightarrow{\delta} Ext^{2p+1,*}(BP_*) \longrightarrow \cdots$$

• There are elements $v_1\in Ext^{0,*}(BP_*M)$, $h_{n+1}\in Ext^{1,*}(BP_*M)$, $v_1b_{n-1}^p\in Ext^{2p,*}(BP_*M)$

$$\begin{split} \delta(h_{n+1}) = & b_n, & \delta(v_1 b_{n-1}^p) = & \alpha_1 b_{n-1}^p \\ \delta(v_1 h_{n+1}) = & \beta_{p^n/p^n-1}, & \delta(v_1^2 b_{n-1}^p) = & \alpha_2 b_{n-1}^p. \end{split}$$

• So in the ANSS for the Moore spectrum one has

$$d_{2p-1}(h_{n+1}) = v_1 b_{n-1}^p, \qquad d_{2p-1}(v_1 h_{n+1}) = v_1^2 b_{n-1}^p.$$

• Applying the connecting homomorphism δ , one has

$$d_{2p-1}(\beta_{p^n/p^n-1}) = \alpha_2 b_{n-1}^p.$$

We could NOT prove that

$$\alpha_2 b_{n-1}^p \in Ext_{BP_*BP}^{2p+1,*}(BP_*, BP_*)$$

is non-zero in the Ext groups although $\alpha_1 b_{n-1}^p$ is non-zero.

• $\alpha_2 b_0^p = 0$ because $\alpha_2 \beta_1 = 0$. And we know that $\beta_{p/p-1}$ (resp. $h_0 h_2$) survives to E_{∞}

J. Hong and \sim

Let $p \ge 5$ be an odd prime. Then β_{p^2/p^2-1} is a permanent cycle in the ANSS. So h_0h_3 is a permanent cycle in the classical ASS.

・ロト ・回ト ・ヨト ・ヨト

We could NOT prove that

$$\alpha_2 b_{n-1}^p \in Ext_{BP_*BP}^{2p+1,*}(BP_*, BP_*)$$

is non-zero in the Ext groups although $\alpha_1 b_{n-1}^p$ is non-zero.

• $\alpha_2 b_0^p = 0$ because $\alpha_2 \beta_1 = 0$. And we know that $\beta_{p/p-1}$ (resp. $h_0 h_2$) survives to E_∞

J. Hong and \sim

Let $p \ge 5$ be an odd prime. Then β_{p^2/p^2-1} is a permanent cycle in the ANSS. So h_0h_3 is a permanent cycle in the classical ASS.

・ロン ・回と ・ヨン ・ヨン

We could NOT prove that

$$\alpha_2 b_{n-1}^p \in Ext_{BP_*BP}^{2p+1,*}(BP_*, BP_*)$$

is non-zero in the Ext groups although $\alpha_1 b_{n-1}^p$ is non-zero.

• $\alpha_2 b_0^p = 0$ because $\alpha_2 \beta_1 = 0$. And we know that $\beta_{p/p-1}$ (resp. $h_0 h_2$) survives to E_{∞}

J. Hong and \sim

Let $p \ge 5$ be an odd prime. Then β_{p^2/p^2-1} is a permanent cycle in the ANSS. So h_0h_3 is a permanent cycle in the classical ASS.

・ロン ・回と ・ヨン ・ヨン

(ロ) (四) (注) (注) (注) [

Small descent SS

• Let T(m) be the Ravenel spectrum characterized by $BP_*T(m) = BP_*[t_1, t_2, \cdots, t_m]$. One has $S^0 \hookrightarrow T(1) \hookrightarrow T(2) \hookrightarrow \cdots \hookrightarrow T(m) \hookrightarrow \cdots \hookrightarrow BP$

• Let X be the
$$(p-1)q$$
 skeleton of $T(1)$, where $q = 2(p-1)$

$$X = S^0 \cup_{\alpha_1} e^q \cup_{\alpha_1} e^{2q} \cup \dots \cup_{\alpha_1} e^{(p-1)q}$$

and let $\overline{X} = S^0 \cup_{\alpha_1} e^q \cup \cdots \cup_{\alpha_1} e^{(p-2)q}$ be the (p-2)q skeleton of T(1).

$$BP_*X = BP_*[t_1]/(t_1^p), \qquad BP_*\overline{X} = BP_*[t_1]/(t_1^{p-1})$$

< □ > < @ > < 注 > < 注 > ... 注

One has the cofiber sequences

• The cofiber sequences gives raise short exact sequences of BP_{\ast} homologies

$$0 \longrightarrow BP_* \longrightarrow BP_*X \longrightarrow BP_*\Sigma^q \overline{X} \longrightarrow 0$$
$$0 \longrightarrow BP\Sigma^q \overline{X} \longrightarrow BP_*\Sigma^q X \longrightarrow BP_*S^{pq} \longrightarrow 0$$
$$0 \longrightarrow BP_*S^{pq} \longrightarrow BP_*\Sigma^{pq}X \longrightarrow BP_*\Sigma^{(p+1)q} \overline{X} \longrightarrow 0$$

One has the cofiber sequences

. . .

 The cofiber sequences gives raise short exact sequences of BP_{*} homologies

$$0 \longrightarrow BP_* \longrightarrow BP_*X \longrightarrow BP_*\Sigma^q X \longrightarrow 0$$
$$0 \longrightarrow BP\Sigma^q \overline{X} \longrightarrow BP_*\Sigma^q X \longrightarrow BP_*S^{pq} \longrightarrow 0$$
$$0 \longrightarrow BP_*S^{pq} \longrightarrow BP_*\Sigma^{pq}X \longrightarrow BP_*\Sigma^{(p+1)q}\overline{X} \longrightarrow 0$$

. . .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

• From the short exact sequences, one gets a long exact sequence

 $0 \longrightarrow BP_* \longrightarrow BP_*X \longrightarrow BP_*\Sigma^q X \longrightarrow BP_*\Sigma^{pq}X \longrightarrow BP_*\Sigma^{(p+1)q}X \longrightarrow \cdots$

and the long exact sequence induces the *small descent spectral* sequence.

SDSS, D. Ravenel

Let X be as above. Then there is a spectral sequence converging to $Ext^{s+u,*}_{BP_*BP}(BP_*,BP_*)$ with E_1 -term

$$E_1^{s,t,u} = Ext_{BP_*BP}^{s,t}(BP_*, BP_*X) \otimes E[\alpha_1] \otimes P[\beta_1]$$

where

$$E_1^{s,t,0} = Ext^{s,t}(BP_*X), \qquad \alpha_1 \in E_1^{0,q,1}, \qquad \beta_1 \in E_1^{0,pq,2}$$

and $d_r: E_r^{s,t,u} \longrightarrow E_r^{s-r+1,t,u+r}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

D. Ravenel 1984

Let $p \geqslant 5$ be an odd prime, then with in $t-s < q(p^3+p)$

$$Ext^{s,t}_{BP_*BP}(BP_*, BP_*X \otimes E_1^2) = A \oplus B \oplus C$$

where $\otimes E_1^2$ means except for the first periodic homotopy elements.

• Because the total degree t-s of β_1 is $pq-2=2p^2-2p-2$ and that of β_{p^2/p^2-1} is $4p-2 \mod pq-2$

$$\frac{p^2 + 1}{\sqrt{2p^4 - 2p^3 + 2p - 4}} \\
 \frac{2p^4 - 2p^3 - 2p^2}{2p^2 + 2p - 4}$$

//m▲旦の▲母▶ ▲ヨ▶ ▲ヨ▶ ヨーのへで

D. Ravenel 1984

Let $p \geqslant 5$ be an odd prime, then with in $t-s < q(p^3+p)$

$$Ext^{s,t}_{BP_*BP}(BP_*, BP_*X \otimes E_1^2) = A \oplus B \oplus C$$

where $\otimes E_1^2$ means except for the first periodic homotopy elements.

• Because the total degree t-s of β_1 is $pq-2=2p^2-2p-2$ and that of β_{p^2/p^2-1} is $4p-2 \mod pq-2$

$$\begin{array}{r} p^2 + 1 \\
 2p^2 - 2p - 2 & \sqrt{2p^4 - 2p^3} + 2p - 4 \\
 \hline
 2p^4 - 2p^3 - 2p^2 \\
 \hline
 \hline
 2p^2 + 2p - 4 \\
 2p^2 - 2p - 2
 \end{array}$$

Xiangjun Wang On the homotopy elements $h_0 h_n$

 $4n^{4} = 2^{4}$

□ > < E > < E > E の < ⊙

We computed the total degree of the generators in $(A \oplus B \oplus C) \otimes E[\alpha_1]$ mod pq - 2. From which we get the E_1 -term of SDSS

・ロト ・回ト ・ヨト ・ヨト

æ

Then we computed the Adams differential and get $d_r(\beta_{p^2/p^2-1}) = 0$.

Further consideration, where is $\beta_{p/p}^{p}$ and $\alpha_{2}\beta_{p/p}^{p}$?

$$\begin{split} & H^0(q_2^{-1}Q/(q_0^\infty,q_1^\infty)) \xrightarrow{\mathsf{CSS}} H^*(P,Q) \xrightarrow{\mathsf{CESS}} Ext_{\mathcal{A}}^2 \\ & \mathsf{Alg.} \bigvee \mathsf{NSS} \qquad \mathsf{Alg.} \bigvee \mathsf{NSS} \xrightarrow{\mathsf{Alg.}} \bigvee \mathsf{ASS} \\ & H^0(v_2^{-1}BP_*/(p^\infty,v_1^\infty)) \xrightarrow{\mathsf{CSS}} Ext_{BP_*BP}^2 \xrightarrow{\pi_*(S^0)} \end{split}$$

$$\begin{array}{ccc} 2q_1\xi_1, & b_1 & & 2q_1\xi_1 \cdot b_1^p & \xrightarrow{\text{CESS}} \tilde{\alpha}_2 b_1^p \neq 0 \\ & & & & \\ Alg. & & & \\ & & & & \\ \frac{v_1^2}{p}, & \frac{v_2^p}{pv_1^p} & \xrightarrow{\sim} & & \\ & & & \\ \hline & & & \\ & & & \\ \end{array} \xrightarrow{(p_1, p_1, p_2)} Alg. & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

 $d_{2p-1}(\beta_{p^2/p^2-1})=\alpha_2\beta_{p/p}^p$ and β_{p^2/p^2-1} survives to E_∞ imply $\alpha_2\beta_{p/p}^p=0.$

(ロ) (同) (E) (E) (E)

•
$$b_1^p = \beta_{p/p}^p \neq 0$$
 in $Ext_{BP_*BP}^{2p,*}(BP_*, BP_*)$, but $i_*(\beta_{p/p}) = 0$ in $Ext_{BP_*BP}^{2p,*}(BP_*, BP_*X)$

$$\cdots \longrightarrow Ext^{s-1}(BP_*\Sigma^q \overline{X}) \xrightarrow{\delta} Ext^s(BP_*) \xrightarrow{i_*} Ext^s(BP_*X) \longrightarrow \cdots$$

• We computed the E_1 -term $E_1^{s,qp^3,u}$ of the SDSS subject to s + u = 2p, which is generated by

$$\beta_1 h_{11} \gamma_2 b_{20}^{p-3} \qquad \beta_1 \alpha_1 b_{20}^{p-3} \eta_p \qquad \beta^{\frac{p-1}{2}} \alpha_1 \mathfrak{h}.$$

This gives a relation $eta_{p/p}=eta_1\mathfrak{g}$ and

$$\alpha_2 \beta_{p/p}^p = \alpha_2 \beta_1 \mathfrak{g} = 0.$$

At prime p = 5, $\beta_{5/5}^5 = \beta_1 x_{952}$ and $\alpha_2 \beta_{5/5}^5 = 0$ (D. Ravenel's Green Book).

・ロト ・回ト ・ヨト ・ヨト

•
$$b_1^p = \beta_{p/p}^p \neq 0$$
 in $Ext_{BP_*BP}^{2p,*}(BP_*, BP_*)$, but $i_*(\beta_{p/p}) = 0$ in $Ext_{BP_*BP}^{2p,*}(BP_*, BP_*X)$
 $\dots \rightarrow Ext^{s-1}(BP_*\Sigma^q \overline{X}) \xrightarrow{\delta} Ext^s(BP_*) \xrightarrow{i_*} Ext^s(BP_*X) \rightarrow \dots$

• We computed the E_1 -term $E_1^{s,qp^3,u}$ of the SDSS subject to s+u=2p, which is generated by

$$\beta_1 h_{11} \gamma_2 b_{20}^{p-3} \qquad \beta_1 \alpha_1 b_{20}^{p-3} \eta_p \qquad \beta^{\frac{p-1}{2}} \alpha_1 \mathfrak{h}.$$

This gives a relation $\beta_{p/p}=\beta_1\mathfrak{g}$ and

$$\alpha_2 \beta_{p/p}^p = \alpha_2 \beta_1 \mathfrak{g} = 0.$$

At prime p = 5, $\beta_{5/5}^5 = \beta_1 x_{952}$ and $\alpha_2 \beta_{5/5}^5 = 0$ (D. Ravenel's Green Book).

Conjecture

• Here we guess
$$\beta_{p/p}^p = \beta_1 h_{11} \gamma_2 b_{20}^{p-3}$$
 and

$$\begin{aligned} \beta_{p/p}^{p} &= \beta_{1}h_{11}\gamma_{2}b_{20}^{p-3} \\ \beta_{p^{2}/p^{2}}^{p} &= \beta_{1}h_{21}h_{11}\delta_{3}b_{30}^{p-4} \\ \cdots \\ \beta_{p^{i}/p^{i}}^{p} &= \beta_{1}h_{i,1}h_{i-1,1}\cdots h_{11}\alpha_{i+1}^{(i+2)}b_{i+1,0}^{p-i-2} \\ \cdots \end{aligned}$$

$$\beta_{p^{p-2}/p^{p-2}} = \beta_1 h_{p-2,1} h_{p-3,1} \cdots h_{11} \alpha_{p-1}^{(p)}$$

where $\alpha_{i+1}^{(i+2)}$ is the i+2-ed Greek letter elements.

・ロン ・回 と ・ヨン ・ヨン

Conjecture

• For
$$i = 0, 1, \cdots, p-2$$

$$\alpha_2 \beta_{p^i/p^i} = \alpha_2 \beta_1 h_{i,1} h_{i-1,1} \cdots h_{11} \alpha_{i+1}^{(i+2)} b_{i+1,0}^{p-i-2} = 0$$

and for $n = 1, 2, \cdots, p-1$, β_{p^n/p^n-1} survives to E_{∞} .

• There is the doomsday for β_{p^n/p^n-1} . If the doomsday for V(n) is 50 years old, $\left(V(\frac{p+1}{2}) \text{ does not exist}\right)$, the doomsday for h_0h_n is 100.

・ロン ・回 と ・ ヨ と ・ ヨ と

Conjecture

• For
$$i = 0, 1, \cdots, p-2$$

$$\alpha_2 \beta_{p^i/p^i} = \alpha_2 \beta_1 h_{i,1} h_{i-1,1} \cdots h_{11} \alpha_{i+1}^{(i+2)} b_{i+1,0}^{p-i-2} = 0$$

and for $n = 1, 2, \cdots, p-1$, β_{p^n/p^n-1} survives to E_{∞} .

There is the doomsday for β_{pⁿ/pⁿ-1}. If the doomsday for V(n) is 50 years old, (V(^{p+1}/₂) does not exist), the doomsday for h₀h_n is 100.

・ロン ・回 と ・ ヨ と ・ ヨ と

Conjecture

• For
$$i = 0, 1, \cdots, p-2$$

$$\alpha_2 \beta_{p^i/p^i} = \alpha_2 \beta_1 h_{i,1} h_{i-1,1} \cdots h_{11} \alpha_{i+1}^{(i+2)} b_{i+1,0}^{p-i-2} = 0$$

and for $n = 1, 2, \cdots, p-1$, β_{p^n/p^n-1} survives to E_{∞} .

• There is the doomsday for β_{p^n/p^n-1} . If the doomsday for V(n) is 50 years old, $\left(V(\frac{p+1}{2}) \text{ does not exist}\right)$, the doomsday for h_0h_n is 100.

Conjecture

For $n \ge p-1$, $\alpha_2 \beta_{p^n/p^n} \ne 0$ and

$$d_{2p-1}(\beta_{p^{n+1}/p^{n+1}-1}) = \alpha_2 \beta_{p^n/p^n}^p.$$

From β_{p^p/p^p-1} , β_{p^n/p^n-1} does not exist and from h_0h_{p+1} , h_0h_n does not exist.

<ロ> (四) (四) (注) (注) (三)

Thank you!

Xiangjun Wang On the homotopy elements h_0h_n

æ