On the homotopy elements $h_{0} h_{n}$

Xiangjun Wang

SUSTech
School of Mathematical Sciences, Nankai University

$$
\text { June 6, } 2018
$$

Contents

(1) The homotopy elements $h_{0} h_{n}$
(2) Toda differential
(3) Method of infinite descent

4 Further consideration

Classical ASS and ANSS

- Let $p \geqslant 5$ be an odd prime. One has the classical Adams spectral sequence (ASS) and the Adams-Novikov spectral sequence (ANSS), they all converge to the stable homotopy groups of spheres.

$$
\begin{array}{cc}
\left\{E_{r}^{s, t}, d_{r}\right\} & E_{2}=\operatorname{Ext}_{B P_{*} B P}^{s, t}\left(S_{p}^{0}\right) \\
\downarrow_{\Phi} & \left.\downarrow_{*}, B P_{*}\right) \\
\left\{E_{r}^{s, t}, d_{r}\right\} \stackrel{\downarrow}{\Longrightarrow} \pi_{*}\left(S_{p}^{0}\right) & E_{2}=E x t_{\mathcal{A}}^{s, t}(\mathbb{Z} / p, \mathbb{Z} / p)
\end{array}
$$

Between the ANSS and the ASS there is the Thom map Φ induced by $\Phi: B P \longrightarrow H \mathbb{Z} / p$.

To detect the E_{2}-terms of the ASS and of the ANSS, one has the following spectral sequences

where $P=\mathbb{Z} / p\left[\xi_{1}, \xi_{2}, \cdots\right]$ and $Q=\mathbb{Z} / p\left[q_{0}, q_{1}, \cdots\right]$.

The homotopy elements $h_{0} h_{n}$
Toda differential

The homotopy elements $h_{0} h_{n}$

- One has $\beta_{p^{n} / p^{n}-1} \in \operatorname{Ext}_{B P_{*} B P}^{2, *}\left(B P_{*}, B P_{*}\right)$, which is detected by the CSS and $\Phi\left(\beta_{p^{n} / p^{n}-1}\right)=h_{0} h_{n+1}$.

$$
\begin{aligned}
& H^{*}(P, Q) \xrightarrow{\mathrm{CESS}} E x t_{\mathcal{A}}^{2} \\
& \text { Alg. }{ }^{N S S} \text {. }{ }_{\Phi} \text { ASS } \\
& H^{0}\left(v_{2}^{-1} B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)\right) \xrightarrow[\mathrm{CSS}]{ } \mathrm{Ext}_{B P_{*} B P_{\mathrm{ANS}}}^{2} \pi_{*}\left(S^{0}\right) \\
& \beta_{p^{n} / p^{n}-1} \in \operatorname{Ext}_{B P_{*} B P}^{2, *}\left(B P_{*}, B P_{*}\right) \subset \pi_{*}\left(B P \wedge \widetilde{X}_{2}\right) \\
& \text { Ф } \\
& h_{0} h_{n+1} \in \quad E x t_{\mathcal{A}}^{2, *}(\mathbb{Z} / p, \mathbb{Z} / p) \subset \quad \pi_{*}\left(H \wedge X_{2}\right)
\end{aligned}
$$

- The convergence of $h_{0} h_{n+1}$ in the classical ASS (that of $\beta_{p^{n} / p^{n}-1}$ in the ANSS) have been being a long standing problem in stable homotopy groups of spheres.
- Let M be the $\bmod p$ Moore spectrum, $M\left(1, p^{n}-1\right)$ be the cofiber

> Secondary periodic family elements in the ANSS, D. Ravenel
> Theorem Let $p \geqslant 5$ be an odd prime. If for some fixed $n \geqslant 1$,
> - the spectrum $M\left(1, p^{n}-1\right)$ is a ring spectrum,
> - $\beta_{p^{n} / p^{n}-1}$ is a permanent cycle and
> - the corresponding homotopy element has order p,
> then $\beta_{s p^{n} / j}$ is a permanent cycle (and the corresponding homotopy
> element has order p) for all $s \geqslant 1$ and 1

- The convergence of $h_{0} h_{n+1}$ in the classical ASS (that of $\beta_{p^{n} / p^{n}-1}$ in the ANSS) have been being a long standing problem in stable homotopy groups of spheres.
- Let M be the $\bmod p$ Moore spectrum, $M\left(1, p^{n}-1\right)$ be the cofiber of $v_{1}^{p^{n}-1}: \Sigma^{*} M \longrightarrow M$.

Secondary periodic family elements in the ANSS, D. Ravenel
 Theorem Let $n \geqslant 5$ be an odd prime. If for some fived $n \geqslant 1$,
 - the spectrum $M\left(1, p^{n}-1\right)$ is a ring spectrum,
 - $\beta_{p^{n} / p^{n-1}}$ is a permanent cycle and
 - the corresponding homotopy element has order p,
 then $\beta_{s p^{n} / j}$ is a permanent cycle (and the corresponding homotopy
 element has order p) for all $s \geqslant 1$ and $1 \leqslant j \leqslant p^{n}-1$

- The convergence of $h_{0} h_{n+1}$ in the classical ASS (that of $\beta_{p^{n} / p^{n}-1}$ in the ANSS) have been being a long standing problem in stable homotopy groups of spheres.
- Let M be the $\bmod p$ Moore spectrum, $M\left(1, p^{n}-1\right)$ be the cofiber of $v_{1}^{p^{n}-1}: \Sigma^{*} M \longrightarrow M$.

Secondary periodic family elements in the ANSS, D. Ravenel

Theorem Let $p \geqslant 5$ be an odd prime. If for some fixed $n \geqslant 1$,

- the spectrum $M\left(1, p^{n}-1\right)$ is a ring spectrum,
- $\beta_{p^{n} / p^{n}-1}$ is a permanent cycle and
- the corresponding homotopy element has order p,
then $\beta_{s p^{n} / j}$ is a permanent cycle (and the corresponding homotopy element has order p) for all $s \geqslant 1$ and $1 \leqslant j \leqslant p^{n}-1$.
- S. Oka proved that $M\left(1, p^{n}-1\right)$ is a ring spectrum.
- From the theorem above and the convergence of $h_{0} h_{n+1}$ one can prove the $\beta_{p^{n} / p^{n}-1}$ is a permanent cycle of order p.

People concerned with the triviality of $v_{1}^{p^{n}-1} \widetilde{\beta}_{p^{n} / p^{n}-1}$

- S. Oka proved that $M\left(1, p^{n}-1\right)$ is a ring spectrum.
- From the theorem above and the convergence of $h_{0} h_{n+1}$ one can prove the $\beta_{p^{n} / p^{n}-1}$ is a permanent cycle of order p.

People concerned with the triviality of $v_{1}^{p^{n}-1} \widetilde{\beta}_{p^{n} / p^{n}-1}$

- S. Oka proved that $M\left(1, p^{n}-1\right)$ is a ring spectrum.
- From the theorem above and the convergence of $h_{0} h_{n+1}$ one can prove the $\beta_{p^{n} / p^{n}-1}$ is a permanent cycle of order p.

People concerned with the triviality of $v_{1}^{p^{n}-1} \widetilde{\beta}_{p^{n} / p^{n}-1}$

Toda differential

- α_{1} and $b_{0}=\beta_{1}$ in $E x t_{B P_{*} B P}^{*, *}\left(B P_{*}, B P_{*}\right)$ are permanent cycles in the ANSS, they converges to the homotopy elements α_{1}, β_{1} respectively.
- H. Toda proved that $\alpha_{1} \beta_{1}^{p}=0$ in $\pi_{*}\left(S^{0}\right)$.
- The relation $\alpha_{1} \beta_{1}^{p}=0$ support a Adams differential It is detected that $x=b_{1}$ i.e $\left.d_{2 p-1}\left(b_{1}\right)\right)=k \cdot \alpha_{1} b_{0}^{p}$
- Based on $d_{2 p-1}\left(h_{1}\right)=k \cdot \alpha_{1} b_{0}^{p}$, D. Ravenel proved that

Toda differential

- α_{1} and $b_{0}=\beta_{1}$ in $E x t_{B P_{*} B P}^{*, *}\left(B P_{*}, B P_{*}\right)$ are permanent cycles in the ANSS, they converges to the homotopy elements α_{1}, β_{1} respectively.
- H. Toda proved that $\alpha_{1} \beta_{1}^{p}=0$ in $\pi_{*}\left(S^{0}\right)$.
- The relation $\alpha_{1} \beta_{1}^{p}=0$ support a Adams differential

It is detected that $x=b_{1}$ i.e $\left.d_{2 p-1}\left(b_{1}\right)\right)=k \cdot \alpha_{1} b_{0}^{p}$

- Based on $d_{2 p-1}\left(b_{1}\right)=k \cdot \alpha_{1} b_{0}^{p}$. D. Ravenel proved that

Toda differential

- α_{1} and $b_{0}=\beta_{1}$ in $E x t_{B P_{*} B P}^{*, *}\left(B P_{*}, B P_{*}\right)$ are permanent cycles in the ANSS, they converges to the homotopy elements α_{1}, β_{1} respectively.
- H. Toda proved that $\alpha_{1} \beta_{1}^{p}=0$ in $\pi_{*}\left(S^{0}\right)$.
- The relation $\alpha_{1} \beta_{1}^{p}=0$ support a Adams differential

$$
d_{r}(x)=\alpha_{1} b_{0}^{p} .
$$

It is detected that $x=b_{1}$ i.e $\left.d_{2 p-1}\left(b_{1}\right)\right)=k \cdot \alpha_{1} b_{0}^{p}$

- Based on $d_{2 p-1}\left(b_{1}\right)=k \cdot \alpha_{1} b_{0}^{p}$, D. Ravenel proved that

Toda differential

- α_{1} and $b_{0}=\beta_{1}$ in $E x t_{B P_{*} B P}^{*, *}\left(B P_{*}, B P_{*}\right)$ are permanent cycles in the ANSS, they converges to the homotopy elements α_{1}, β_{1} respectively.
- H. Toda proved that $\alpha_{1} \beta_{1}^{p}=0$ in $\pi_{*}\left(S^{0}\right)$.
- The relation $\alpha_{1} \beta_{1}^{p}=0$ support a Adams differential

$$
d_{r}(x)=\alpha_{1} b_{0}^{p} .
$$

It is detected that $x=b_{1}$ i.e $\left.d_{2 p-1}\left(b_{1}\right)\right)=k \cdot \alpha_{1} b_{0}^{p}$

- Based on $d_{2 p-1}\left(b_{1}\right)=k \cdot \alpha_{1} b_{0}^{p}$, D. Ravenel proved that

$$
d_{2 p-1}\left(b_{n}\right) \equiv \alpha_{1} b_{n-1}^{p}
$$

- Consider the cofiber sequence

$$
S^{0} \xrightarrow{p} S^{0} \longrightarrow M
$$

which induces a short exact sequence of $B P$-homologies

$$
0 \longrightarrow B P_{*} \xrightarrow{p} B P_{*} \longrightarrow B P_{*} M \longrightarrow 0
$$

- The short exact sequence of $B P$-homologies induces a long exact sequence of Ext groups and it commutes with the Adams differential:
$E x t_{B P_{*} B P}^{s, t}\left(B P_{*}, N\right)$ is denoted by $E x t^{s, t}(N)$ for short.

$$
\begin{gathered}
\cdots \rightarrow \operatorname{Ext}^{1, *}\left(B P_{*}\right) \longrightarrow \operatorname{Ext}^{1, *}\left(B P_{*} M\right) \xrightarrow{\delta} \operatorname{Ext}^{2, *}\left(B P_{*}\right) \longrightarrow \cdots \\
\downarrow d_{2 p-1} \\
\downarrow d_{2 p-1} \\
\cdots \operatorname{Ext}^{2 p, *}\left(B P_{*}\right) \rightarrow \operatorname{Ext}^{2 p, *}\left(B P_{*} M\right) \xrightarrow{\delta} \operatorname{Ext}^{2 p+1, *}\left(B P_{*}\right) \rightarrow \cdots
\end{gathered}
$$

- There are elements $v_{1} \in \operatorname{Ext}{ }^{0, *}\left(B P_{*} M\right), h_{n+1} \in \operatorname{Ext}^{1, *}\left(B P_{*} M\right)$, $v_{1} b_{n-1}^{p} \in E x t^{2 p, *}\left(B P_{*} M\right)$

- So in the ANSS for the Moore spectrum one has

- Applying the connecting homomorphism δ, one has

$$
\begin{aligned}
& \cdots \longrightarrow \operatorname{Ext}^{1, *}\left(B P_{*}\right) \longrightarrow \operatorname{Ext}^{1, *}\left(B P_{*} M\right) \xrightarrow{\delta} \operatorname{Ext}^{2, *}\left(B P_{*}\right) \longrightarrow \cdots \\
& \downarrow^{d_{2 p-1}} \quad \downarrow^{d_{2 p-1}} \quad \downarrow^{d_{2 p-1}} \\
& \cdots \rightarrow \operatorname{Ext}^{2 p, *}\left(B P_{*}\right) \rightarrow \operatorname{Ext}^{2 p, *}\left(B P_{*} M\right) \xrightarrow{\delta} \operatorname{Ext}^{2 p+1, *}\left(B P_{*}\right) \rightarrow \cdots
\end{aligned}
$$

- There are elements $v_{1} \in E x t^{0, *}\left(B P_{*} M\right), h_{n+1} \in E x t^{1, *}\left(B P_{*} M\right)$, $v_{1} b_{n-1}^{p} \in E x t^{2 p, *}\left(B P_{*} M\right)$

$$
\begin{aligned}
\delta\left(h_{n+1}\right) & =b_{n}, & & \delta\left(v_{1} b_{n-1}^{p}\right)=\alpha_{1} b_{n-1}^{p} \\
\delta\left(v_{1} h_{n+1}\right) & =\beta_{p^{n} / p^{n}-1}, & & \delta\left(v_{1}^{2} b_{n-1}^{p}\right)=\alpha_{2} b_{n-1}^{p}
\end{aligned}
$$

- So in the ANSS for the Moore spectrum one has

$$
d_{2 p-1}\left(h_{n+1}\right)=v_{1} b_{n-1}^{p}, \quad d_{2 p-1}\left(v_{1} h_{n+1}\right)=v_{1}^{2} b_{n-1}^{p} .
$$

- Applying the connecting homomorphism δ, one has
$\cdots \longrightarrow \operatorname{Ext}^{1, *}\left(B P_{*}\right) \longrightarrow \operatorname{Ext}^{1, *}\left(B P_{*} M\right) \xrightarrow{\delta} \operatorname{Ext}^{2, *}\left(B P_{*}\right) \longrightarrow \cdots$ $\downarrow^{d_{2 p-1}} \quad \downarrow^{d_{2 p-1}} \quad \downarrow d_{2 p-1}$
$\cdots \rightarrow \operatorname{Ext}^{2 p, *}\left(B P_{*}\right) \rightarrow \operatorname{Ext}^{2 p, *}\left(B P_{*} M\right) \xrightarrow{\delta} \operatorname{Ext}^{2 p+1, *}\left(B P_{*}\right) \rightarrow \cdots$
- There are elements $v_{1} \in E x t^{0, *}\left(B P_{*} M\right), h_{n+1} \in E x t^{1, *}\left(B P_{*} M\right)$, $v_{1} b_{n-1}^{p} \in E x t^{2 p, *}\left(B P_{*} M\right)$

$$
\begin{aligned}
\delta\left(h_{n+1}\right) & =b_{n}, & & \delta\left(v_{1} b_{n-1}^{p}\right)=\alpha_{1} b_{n-1}^{p} \\
\delta\left(v_{1} h_{n+1}\right) & =\beta_{p^{n} / p^{n}-1}, & & \delta\left(v_{1}^{2} b_{n-1}^{p}\right)=\alpha_{2} b_{n-1}^{p}
\end{aligned}
$$

- So in the ANSS for the Moore spectrum one has

$$
d_{2 p-1}\left(h_{n+1}\right)=v_{1} b_{n-1}^{p}, \quad d_{2 p-1}\left(v_{1} h_{n+1}\right)=v_{1}^{2} b_{n-1}^{p}
$$

- Applying the connecting homomorphism δ, one has

$$
d_{2 p-1}\left(\beta_{p^{n} / p^{n}-1}\right)=\alpha_{2} b_{n-1}^{p}
$$

We could NOT prove that

$$
\alpha_{2} b_{n-1}^{p} \in E x t_{B P_{*} B P}^{2 p+1, *}\left(B P_{*}, B P_{*}\right)
$$

is non-zero in the Ext groups although $\alpha_{1} b_{n-1}^{p}$ is non-zero.

J. Hong and
 Let $p \geqslant 5$ be an odd prime. Then $\beta_{p^{2} / p^{2}-1}$ is a permanent cycle in the ANSS. So $h_{0} h_{3}$ is a permanent cycle in the classical ASS.

We could NOT prove that

$$
\alpha_{2} b_{n-1}^{p} \in E x t_{B P_{*} B P}^{2 p+1, *}\left(B P_{*}, B P_{*}\right)
$$

is non-zero in the Ext groups although $\alpha_{1} b_{n-1}^{p}$ is non-zero.

- $\alpha_{2} b_{0}^{p}=0$ because $\alpha_{2} \beta_{1}=0$. And we know that $\beta_{p / p-1}$ (resp. $h_{0} h_{2}$) survives to E_{∞}

J. Hong and
 Let $p \geqslant 5$ be an odd prime. Then $\beta_{p^{2} / p^{2}-1}$ is a permanent cycle in the ANSS. So $h_{0} h_{3}$ is a permanent cycle in the classical ASS.

We could NOT prove that

$$
\alpha_{2} b_{n-1}^{p} \in \operatorname{Ext}_{B P_{*} B P}^{2 p+1, *}\left(B P_{*}, B P_{*}\right)
$$

is non-zero in the Ext groups although $\alpha_{1} b_{n-1}^{p}$ is non-zero.

- $\alpha_{2} b_{0}^{p}=0$ because $\alpha_{2} \beta_{1}=0$. And we know that $\beta_{p / p-1}$ (resp. $h_{0} h_{2}$) survives to E_{∞}

J. Hong and ~

Let $p \geqslant 5$ be an odd prime. Then $\beta_{p^{2} / p^{2}-1}$ is a permanent cycle in the ANSS. So $h_{0} h_{3}$ is a permanent cycle in the classical ASS.

Small descent SS

- Let $T(m)$ be the Ravenel spectrum characterized by $B P_{*} T(m)=B P_{*}\left[t_{1}, t_{2}, \cdots, t_{m}\right]$. One has

$$
S^{0} \hookrightarrow T(1) \hookrightarrow T(2) \hookrightarrow \cdots \hookrightarrow T(m) \hookrightarrow \cdots \hookrightarrow B P
$$

- Let X be the $(p-1) q$ skeleton of $T(1)$, where $q=2(p-1)$

$$
X=S^{0} \cup_{\alpha_{1}} e^{q} \cup_{\alpha_{1}} e^{2 q} \cup \cdots \cup_{\alpha_{1}} e^{(p-1) q}
$$

and let $\bar{X}=S^{0} \cup_{\alpha_{1}} e^{q} \cup \cdots \cup_{\alpha_{1}} e^{(p-2) q}$ be the $(p-2) q$ skeleton of $T(1)$.

$$
B P_{*} X=B P_{*}\left[t_{1}\right] /\left(t_{1}^{p}\right), \quad B P_{*} \bar{X}=B P_{*}\left[t_{1}\right] /\left(t_{1}^{p-1}\right)
$$

- One has the cofiber sequences

$$
\left.\begin{array}{c}
S^{0} \longrightarrow X \longrightarrow \Sigma^{q} \bar{X} \longrightarrow S^{(p-1) q} \\
\Sigma^{q} \bar{X} \longrightarrow \Sigma^{q} X \longrightarrow S^{p q} \longrightarrow \Sigma^{p q} \bar{X} \\
S^{p q} \longrightarrow \Sigma^{p q} X \longrightarrow \Sigma^{(p+1) q} \bar{X} \longrightarrow S^{(2 p-1) q} \\
\ldots
\end{array}\right] \quad .
$$

- The cofiber sequences gives raise short exact sequences of $B P_{*}$ homologies

- One has the cofiber sequences

$$
\begin{aligned}
S^{0} \longrightarrow X \longrightarrow \Sigma^{q} \bar{X} \longrightarrow S^{(p-1) q} \\
\Sigma^{q} \bar{X} \longrightarrow \Sigma^{q} X \longrightarrow S^{p q} \longrightarrow \Sigma^{p q} \bar{X} \\
S^{p q} \longrightarrow \Sigma^{p q} X \longrightarrow \Sigma^{(p+1) q} \bar{X} \longrightarrow S^{(2 p-1) q}
\end{aligned}
$$

- The cofiber sequences gives raise short exact sequences of $B P_{*}$ homologies

$$
\begin{aligned}
& 0 \longrightarrow B P_{*} \longrightarrow B P_{*} X \longrightarrow B P_{*} \Sigma^{q} \bar{X} \longrightarrow 0 \\
& 0 \longrightarrow B P \Sigma^{q} \bar{X} \longrightarrow B P_{*} \Sigma^{q} X \longrightarrow B P_{*} S^{p q} \longrightarrow 0 \\
& 0 \longrightarrow B P_{*} S^{p q} \longrightarrow B P_{*} \Sigma^{p q} X \longrightarrow B P_{*} \Sigma^{(p+1) q} \bar{X} \longrightarrow 0
\end{aligned}
$$

- From the short exact sequences, one gets a long exact sequence

$$
0 \longrightarrow B P_{*} \longrightarrow B P_{*} X \longrightarrow B P_{*} \Sigma^{q} X \longrightarrow B P_{*} \Sigma^{p q} X \longrightarrow B P_{*} \Sigma^{(p+1) q} X \longrightarrow \cdots
$$

and the long exact sequence induces the small descent spectral sequence.

SDSS, D. Ravenel

Let X be as above. Then there is a spectral sequence converging to $E x t_{B P_{*} B P}^{s+u, *}\left(B P_{*}, B P_{*}\right)$ with E_{1}-term

$$
E_{1}^{s, t, u}=E x t_{B P_{*} B P}^{s, t}\left(B P_{*}, B P_{*} X\right) \otimes E\left[\alpha_{1}\right] \otimes P\left[\beta_{1}\right]
$$

where

$$
E_{1}^{s, t, 0}=E x t^{s, t}\left(B P_{*} X\right), \quad \alpha_{1} \in E_{1}^{0, q, 1}, \quad \beta_{1} \in E_{1}^{0, p q, 2} .
$$

and $d_{r}: E_{r}^{s, t, u} \longrightarrow E_{r}^{s-r+1, t, u+r}$.

D. Ravenel 1984

Let $p \geqslant 5$ be an odd prime, then with in $t-s<q\left(p^{3}+p\right)$

$$
E x t_{B P_{*} B P}^{s, t}\left(B P_{*}, B P_{*} X \otimes E_{1}^{2}\right)=A \oplus B \oplus C
$$

where $\otimes E_{1}^{2}$ means except for the first periodic homotopy elements.

D. Ravenel 1984

Let $p \geqslant 5$ be an odd prime, then with in $t-s<q\left(p^{3}+p\right)$

$$
E x t_{B P_{*} B P}^{s, t}\left(B P_{*}, B P_{*} X \otimes E_{1}^{2}\right)=A \oplus B \oplus C
$$

where $\otimes E_{1}^{2}$ means except for the first periodic homotopy elements.

- Because the total degree $t-s$ of β_{1} is $p q-2=2 p^{2}-2 p-2$ and that of $\beta_{p^{2} / p^{2}-1}$ is $4 p-2 \bmod p q-2$

$$
\begin{array}{rc}
& p^{2}
\end{array}+1
$$

$$
4 p-2
$$

We computed the total degree of the generators in $(A \oplus B \oplus C) \otimes E\left[\alpha_{1}\right]$ $\bmod p q-2$. From which we get the E_{1}-term of SDSS

Then we computed the Adams differential and get $d_{r}\left(\beta_{p^{2} / p^{2}-1}\right)=0$.

Further consideration, where is $\beta_{p / p}^{p}$ and $\alpha_{2} \beta_{p / p}^{p}$?

$$
\begin{aligned}
& H^{0}\left(q_{2}^{-1} Q /\left(q_{0}^{\infty}, q_{1}^{\infty}\right)\right) \xrightarrow{\mathrm{CSS}} H^{*}(P, Q) \xrightarrow[\cong]{\mathrm{CESS}} E x t_{\mathcal{A}}^{2} \\
& \text { Alg. } \| \text { NSS Alg. } \Downarrow^{\text {NSS }}{ }_{\Phi}{ }_{\downarrow} \text { ASS } \\
& H^{0}\left(v_{2}^{-1} B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)\right) \xrightarrow[\operatorname{CSS}]{ } E x t_{B P_{*} B P}^{2} \xrightarrow[\text { ANSS }]{\longrightarrow} \pi_{*}\left(S^{0}\right)
\end{aligned}
$$

$d_{2 p-1}\left(\beta_{p^{2} / p^{2}-1}\right)=\alpha_{2} \beta_{p / p}^{p}$ and $\beta_{p^{2} / p^{2}-1}$ survives to E_{∞} imply $\alpha_{2} \beta_{p / p}^{p}=0$.

- $b_{1}^{p}=\beta_{p / p}^{p} \neq 0$ in $E x t_{B P_{*} B P}^{2 p, *}\left(B P_{*}, B P_{*}\right)$, but $i_{*}\left(\beta_{p / p}\right)=0$ in $E x t_{B P_{*} B P}^{2 p, *}\left(B P_{*}, B P_{*} X\right)$
$\cdots \rightarrow E x t^{s-1}\left(B P_{*} \Sigma^{q} \bar{X}\right) \xrightarrow{\delta} E x t^{s}\left(B P_{*}\right) \xrightarrow{i_{*}} E x t^{s}\left(B P_{*} X\right) \longrightarrow \cdots$
- We computed the E_{1}-term $E_{1}^{s, q p^{\circ}, u}$ of the SDSS subject to $s+u=2 p$, which is generated by

This gives a relation $\beta_{p / p}=\beta_{1} \mathfrak{g}$ and

At prime $p=5, \beta_{5 / 5}^{5}=\beta_{1} x_{952}$ and $\alpha_{2} \beta_{5 / 5}^{5}=0$ (D. Ravenel's Green Book).

- $b_{1}^{p}=\beta_{p / p}^{p} \neq 0$ in $E x t_{B P_{*} B P}^{2 p, *}\left(B P_{*}, B P_{*}\right)$, but $i_{*}\left(\beta_{p / p}\right)=0$ in $E x t_{B P_{*} B P}^{2 p, *}\left(B P_{*}, B P_{*} X\right)$
$\cdots \rightarrow E x t^{s-1}\left(B P_{*} \Sigma^{q} \bar{X}\right) \xrightarrow{\delta} E x t^{s}\left(B P_{*}\right) \xrightarrow{i_{*}} E x t^{s}\left(B P_{*} X\right) \longrightarrow \cdots$
- We computed the E_{1}-term $E_{1}^{s, q p^{3}, u}$ of the SDSS subject to $s+u=2 p$, which is generated by

$$
\beta_{1} h_{11} \gamma_{2} b_{20}^{p-3} \quad \beta_{1} \alpha_{1} b_{20}^{p-3} \eta_{p} \quad \beta^{\frac{p-1}{2}} \alpha_{1} \mathfrak{h} .
$$

This gives a relation $\beta_{p / p}=\beta_{1} \mathfrak{g}$ and

$$
\alpha_{2} \beta_{p / p}^{p}=\alpha_{2} \beta_{1} \mathfrak{g}=0 .
$$

At prime $p=5, \beta_{5 / 5}^{5}=\beta_{1} x_{952}$ and $\alpha_{2} \beta_{5 / 5}^{5}=0$ (D. Ravenel's Green Book).

Conjecture

- Here we guess $\beta_{p / p}^{p}=\beta_{1} h_{11} \gamma_{2} b_{20}^{p-3}$ and

$$
\begin{aligned}
& \beta_{p / p}^{p}=\beta_{1} h_{11} \gamma_{2} b_{20}^{p-3} \\
& \beta_{p^{2} / p^{2}}^{p}=\beta_{1} h_{21} h_{11} \delta_{3} b_{30}^{p-4} \\
& \cdots \\
& \beta_{p^{i} / p^{i}}^{p}=\beta_{1} h_{i, 1} h_{i-1,1} \cdots h_{11} \alpha_{i+1}^{(i+2)} b_{i+1.0}^{p-i-2} \\
& \cdots \\
& \beta_{p^{p-2} / p^{p-2}}=\beta_{1} h_{p-2,1} h_{p-3,1} \cdots h_{11} \alpha_{p-1}^{(p)}
\end{aligned}
$$

where $\alpha_{i+1}^{(i+2)}$ is the $i+2$-ed Greek letter elements.

Conjecture

- For $i=0,1, \cdots, p-2$

$$
\alpha_{2} \beta_{p^{i} / p^{i}}=\alpha_{2} \beta_{1} h_{i, 1} h_{i-1,1} \cdots h_{11} \alpha_{i+1}^{(i+2)} b_{i+1.0}^{p-i-2}=0
$$

and for $n=1,2, \cdots, p-1, \beta_{p^{n} / p^{n}-1}$ survives to E_{∞}.
There is the doomsday for $\beta_{p^{n} / p^{n}-1}$. If the doomsday for $V(n)$ is 50 years old, $\left(V\left(\frac{p+1}{2}\right)\right.$ does not exist), the doomsday for $h_{0} h_{n}$ is 100 .

Conjecture

- For $i=0,1, \cdots, p-2$

$$
\alpha_{2} \beta_{p^{i} / p^{i}}=\alpha_{2} \beta_{1} h_{i, 1} h_{i-1,1} \cdots h_{11} \alpha_{i+1}^{(i+2)} b_{i+1.0}^{p-i-2}=0
$$

and for $n=1,2, \cdots, p-1, \beta_{p^{n} / p^{n}-1}$ survives to E_{∞}.

- There is the doomsday for $\beta_{p^{n} / p^{n}-1}$.
years old, $\left(V\left(\frac{p+1}{2}\right)\right.$ does not exist), the doomsday for $h_{0} h_{n}$ is 100 .

Conjecture

- For $i=0,1, \cdots, p-2$

$$
\alpha_{2} \beta_{p^{i} / p^{i}}=\alpha_{2} \beta_{1} h_{i, 1} h_{i-1,1} \cdots h_{11} \alpha_{i+1}^{(i+2)} b_{i+1.0}^{p-i-2}=0
$$

and for $n=1,2, \cdots, p-1, \beta_{p^{n} / p^{n}-1}$ survives to E_{∞}.

- There is the doomsday for $\beta_{p^{n} / p^{n}-1}$. If the doomsday for $V(n)$ is 50 years old, $\left(V\left(\frac{p+1}{2}\right)\right.$ does not exist), the doomsday for $h_{0} h_{n}$ is 100 .

Conjecture

For $n \geqslant p-1, \alpha_{2} \beta_{p^{n} / p^{n}} \neq 0$ and

$$
d_{2 p-1}\left(\beta_{p^{n+1} / p^{n+1}-1}\right)=\alpha_{2} \beta_{p^{n} / p^{n}}^{p} .
$$

From $\beta_{p^{p} / p^{p}-1}, \beta_{p^{n} / p^{n}-1}$ does not exist and from $h_{0} h_{p+1}$, $h_{0} h_{n}$ does not exist.

Thank you!

